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1 Lagrange multipliers

For a matrix A, recall the definition of matrix two norm:

‖A‖2 = sup
‖x‖2=1

‖Ax‖2

This is indeed a constraint optimization problem. Consider A =

[
1 2
1 0

]
We want to maximize a function f on R2 subject to a constraint g(x1, x2) = 0 In our matrix norm

example,

f(x1, x2) = ‖Ax‖22
= (x1 + 2x2)2 + x21

= 2x21 + 4x1x2 + 4x22

and

g(x1, x2) = ‖x‖22 − 1 = x21 + x22 − 1

The ellipses are the level curves of f, i.e. the curves f(x1, x2) = constant. The gradient vector field of f,

∇f(x1, x2) =
δf(x1, x2)

δx1
î+

δf(x1, x2)

δx2
ĵ

indicates the direction and rate of the fastest increase of f at the point (x1, x2). It is always perpendicular to
the level curves of f. The thick circle in the figure is the curve T : g(x1, x2) = 0, the constraint. We are able
to find the maximum of f on that curve. Look at the point P ∈ T and at the gradient vector ∇f at point P.
This vector is not perpendicular to T and therefore has a non-zero component tangent to T . It follows that
f increases along T , in the direction of ∇f(B)tangent, and that therefore f(P) is not a maximum of f on T .
For the same reason , f(P) is not a minimum.
A maximum (or minimum) of f on T can only occur at points where ∇f is perpendicular to T and therefore
has zero tangential component. Since ∇g is also always perpendicular to the curve T , we are looking for
points (x1, x2) at which ∇f and ∇gare parallel, meaning that

∇f (x1, x2) = λ∇g(x1, x2) (1)

Those points of course must lie on T

g(x1, x2) = 0 (2)

Equation (1) and (2) form a system of 3 (usually nonlinear) equations for the three unknowns x1, x2, λ. In
the figure the four points M, M’, m, m’ satisfy all 3 conditions. The maximum of f is assumed at M and M’,
and the minimum of m and m’. Function of more variables, say f(x1, . . . , xn) subject to multiple constrains
(say g1 = g2 = . . . = gk = 0) are treated in a similar manner.

∇f(x1, ..., xn) =

k∑
j=1

λj∇gj (x1, ..., xn) (3)

g1(x1, ..., xn) = 0

....

gk(x1, ..., xn) = 0
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Figure 1: Level set for f(x1, x2)
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and test the points found to be the maxima and minima. As in single-variable calculus, there are ”inflection
points” where ∇f = 0 and λ = 0 or exceptional points where ∇g = 0 and λ might have to be ∞ but those
will play no role in our example. The proportionality constants λ1, ....., λn are called Lagrange multipliers.
The solutions of (3) are called critical points of the constrained function f. In general optimization problem,
this will be reformulated as (first order) Karush-Kuhn-Tucker condition or KKT condition in short.

Karush-Kuhn-Tucker(KKT) condition

Recall that the general convex optimization problem can be formulated as:

min f0(x)

s.t. fi(x) ≤ 0, ∀i = 1, . . . ,m

hj(x) = 0, ∀j = 1, . . . , p

(4)

The Lagrangian of the constrained optimization problem (4) is denoted as:

L(x, λ, µ) = f(x) +

m∑
i=1

λifi(x) +

l∑
i=1

µihi(x) (5)

Now assume f0, fi, hi are differentiable. We say that x satisfies the (first order) Karush-Kuhn-Tucker(KKT)
condition if:

∇xL(x, λ, µ) = 0

gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

λigi(x) = 0, i = 1, . . . ,m

λi ≥ 0, i = 1, . . . ,m

More detailed discussion will show this is a necessary condition for a convex function to reach the optimum,
i.e. if x? is an optimal solution of the minimization problem, then x? must satisfy the KKT conditions above.
Consider the following system

2x1 + 2x2 = λx1 (6)

2x1 + 4x2 = λx2 (7)

together with the constraint

x21 + x22 = 1 (8)

Now the equations (6) and (7) are an eigenvalue problem with solutions

λ+ = 3 +
√

5 (9)[
x1
x2

]
= c

[
1

(λ+ − 2)/2

]
(10)

and

λ+ = 3−
√

5 (11)[
x1
x2

]
= c

[
1

(λ− − 2)/2

]
(12)

Here notice that the equation (8) forces us to choose c in such a way that the eigenvector has length 1. For
each λ there are 2 unit eigenvectors which are negative of each other.
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We now have found four solutions x1, x2, λ of the Lagrange multiplier problem. Two give the minimum of
2x21 + 4x1x2 + 4x22 on x1 + x2 = 1, the other 2 the maximum. The desired norm of A will be the square root
of that maximum, since the norm is

max
√

2x21 + 4x1x2 + 4x22

The key question is: what is the matrix

[
2 2
2 4

]
that appeared in the eigenvalue problem (6) and (7).

‖Ax‖22 = (Ax.Ax) = (AtAx.x) (13)

Set B = AtA. This is a symmetric matrix. If B =

[
a b
b c

]
then

Bx.x = ax21 + 2bx1x2 + cx22 (14)

Lagrange’s method applied to (14) with constraint x21 + x22 = 1, yields the two equations

ax1 + bx2 = λx1 (15)

bx1 + cx2 = λx2 (16)

This is precisely the eigenvalue problem for the symmetric matrix B.

B = AtA =

[
1 1
2 0

] [
1 2
1 0

]
=

[
2 2
2 4

]
The Lagrange mulitpliers, alias the eigenvalues of (6) and (7) are precisely the maximum and minimum of
‖Ax‖22 on ‖x‖22 = 1, obviously the larger one 3 +

√
5 is the maximum. The maximum of ‖Ax‖2 is then the

square root ‖A‖2 =
√

3 +
√

5

2 Solving System of Linear Algebraic Equations

2.1 Under-constrained System

The SVD of a matrix A also yields valuable geometric information about solution of a system of linear
(algebraic) equations.
Consider :

Ax = y
UΣV Tx = y

ΣV Tx = UTy
x̃ = Σ−1ỹ
x̃i = ỹi/σi

Example. [
1 1
2 2

]
x = y

Express the 2× 2 matrix in terms of its SVD, UΣV T[
1 1
2 2

][
1 0
0 0

][
1 1
1 −1

]
x = y

4



Geometric Foundations of Data Sciences CSE392(66540) CS378(51735) M392C(54487) Spring 2019
MW 9:30a.m.-11:00a.m. GDC 4.302 bajaj@cs.utexas.edu
Lecture 17: Lagrange Multipliers: Constrained v.s. Unconstrained, Feb 25, 2019

Invert U and combine Σ and V T

[
1 1
0 0

]
x =

[
1
5

][
1 2
−2 1

]
y[

x1 + x2
0

]
=

1

5

[
y1 + 2y2
−2y1 + y2

]
y

Clearly, a solution only exists when y2 = 2y1, i.e. when y lives in the range of A.

The problem here is that A is rank deficient, i.e. not full-rank.
Consider the general case where A, is an n×n, and has rank k. This means that A has n−k singular values
which are zero:

Σ =



σ1
. . .

σk
0

. . .

0


=

[
Σk 0
0 0

]

If we try to solve the equations as in Equation 1, we hit a snag:

Ax = y

UΣV Tx = y (17)[
Σk 0
0 0

]
x̃ = ỹ

x̃i = ỹi/σi , for i ≤M only

In the SVD-rotated space, we can only access the first k elements of the solution.
If there are more unknowns M than equations N, the problem is under-constrained or ill-posed :

Ax = y

where A is order N ×M , x is order M × 1 and y is order N × 1, where N < M
Using our previous results on SVD, we can rewrite the linear system as

N∑
i=1

σiui(vi
Tx) = y (18)

In other words, the only part of x that matters is the component that lies in the N-dimensional subspace of
RM spanned by the first N columns of V. Thus, the addition of any component that lies in the null-space of
A will make no difference: if x∗ is any solution to Equation 18, so is x∗ +

∑M
i=N+1 αivi, for any αi.

Example. Consider [
1 1

]
x = 4

The SVD of this 1× 2 matrix shows: [
1
] [

1 0
] [1 1

1 −1

]
x = 4

The null-space (i.e. the set of vector x such that Ax = 0) of A is α

[
1
−1

]
. And we know x =

[
2
2

]
is one

solution. Therefore , in this under-constrained scenario, the solution will be :

x =

[
2
2

]
+ α

[
1
−1

]
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2.1.1 Regularization

In general, under-constrained problems can be made well-posed by the addition of a regularization, i.e. a
cost-function that we’d like the solution to minimize. In the case of under-constrained linear equations, we
know that the solution space lies in an N dimensional subspace of RM . One obvious regularization would be
to pick the solution that has the minimum square norm, i.e. the solution that is closest to the origin. The
new, well-posed version of the problem can now be stated as follows:

min
x∈RM

xTx

s.t. Ax = y (19)

Proposition. If A ∈ RN×M , N ≤M , has full row-rank, then AAT is invertible.

Proof.

A = U
[
ΣN 0

]
V T

where ΣN is invertible. Therefore,

AAT = U
[
ΣN 0

]
V TV

[
ΣN

0

]
UT

= U
[
ΣN 0

][ΣN

0

]
UT

= UΣN
2UT

where ΣN
2 is the N ×N diagonal matrix with σi

2 on the ith diagonal. Since ΣN has no zero elements on the
diagonal, neither does Σ2

N . Therefore AAT is invertible (and symmetric, positive-definite). It is also worth
noting here that since that each matrix in the last equation above is invertible, we can write down the SVD
(and eigenvector decomposition) of (AAT )−1 by inspection: (AAT )−1 = UΣN

2 UT

We will now solve the problem stated in Equation 19 using Lagrange multipliers. We assume that A has full
row-rank. Let

H = xTx+ λT (Ax− y) (20)

The solution is found by solving the equation ∂H
∂x = 0 and then ensuring that the constraint (Ax = y) holds.

First solve for x:

∂H

∂x
= 0

2xT + λTA = 0

x =
1

2
AλT

Now using the fact that AAT is invertible, choose λ to ensure that the original equation holds:

Ax = y

A(
1

2
ATλ) = y

λ = 2(AAT )−1y

x = AT (AAT )−1y

Denote the right psuedo-inverse as:
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AR
+ = AT (AAT )−1

Proposition. Let A be an N × M matrix, N < M , with full row-rank. Then the pseudo-inverse of A
projects a vector from the range of A (A subset of RN ) into the N -dimensional sub-space of RM spanned by
the columns of A: AR

+ = AT (AAT )−1

Proof. In fact, we have:

AR
+ = AT (AAT )−1

= V

[
ΣN

0

]
UTUΣN

−2UT

= V

[
ΣN
−1

0

]
UT

=
∑N

i=1
σi
−1viui

T

One should compare the sum of outer products in the deduction with those describing A in linear systems
(Equation 18). This comparison drives home the geometric interpretation of the action of AR

+.

Proposition 2.1.1 means that the solution to the regularized problem of Equation 5, x = AR
+y, defines the

unique solution x that is completely orthogonal to the null-space of A. This should make good sense: in
Section 3.1 we found that any component of the solution that lies in the null-space is irrelevant, and the
problem defined in Equation 5 was to find the smallest?? solution vector.
Finally then, we can write an explicit expression for the complete space of solutions to Ax = y, for A, N×M ,
with full row-rank:

x = A+
R y +

M∑
i=N+1

αivi, for any αi

2.2 Over-Constrained System : Linear Regression

In the matrix form, it is
Ax = y

where A is order N ×M , x is order M × 1, y is order N × 1, where N > M . Find the vector x which

minimizes E =
∑N

i=1 (ai
Tx− y)

2
= (Ax− y)T (Ax− y) The column-rank of a matrix is equal to its row-rank

and its rank, and all three equal the number of non-zero singular values.

A = U
[
ΣN 0

]
V T

x = (ATA)
−1
AT y

References

[Fl] Hermann Flaschka. Principles of Analysis, 1995

[SE] Stefan Evert. Online Lectures by Stefan Evert, Osnabruck, Germany

7


	Lagrange multipliers
	Solving System of Linear Algebraic Equations
	Under-constrained System
	Regularization

	Over-Constrained System : Linear Regression


