1 Lagrange multipliers

For a matrix A, recall the definition of matrix two norm:

$$
\|A\|_{2}=\sup _{\|x\|_{2}=1}\|A x\|_{2}
$$

This is indeed a constraint optimization problem. Consider $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$
We want to maximize a function f on \mathbb{R}^{2} subject to a constraint $g\left(x_{1}, x_{2}\right)=0$ In our matrix norm example,

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =\|A x\|_{2}^{2} \\
& =\left(x_{1}+2 x_{2}\right)^{2}+x_{1}^{2} \\
& =2 x_{1}^{2}+4 x_{1} x_{2}+4 x_{2}^{2}
\end{aligned}
$$

and

$$
g\left(x_{1}, x_{2}\right)=\|x\|_{2}^{2}-1=x_{1}^{2}+x_{2}^{2}-1
$$

The ellipses are the level curves of f , i.e. the curves $f\left(x_{1}, x_{2}\right)=$ constant. The gradient vector field of f ,

$$
\nabla f\left(x_{1}, x_{2}\right)=\frac{\delta f\left(x_{1}, x_{2}\right)}{\delta x_{1}} \hat{i}+\frac{\delta f\left(x_{1}, x_{2}\right)}{\delta x_{2}} \hat{j}
$$

indicates the direction and rate of the fastest increase of f at the point $\left(x_{1}, x_{2}\right)$. It is always perpendicular to the level curves of f . The thick circle in the figure is the curve $T: g\left(x_{1}, x_{2}\right)=0$, the constraint. We are able to find the maximum of f on that curve. Look at the point $P \in T$ and at the gradient vector ∇f at point P . This vector is not perpendicular to T and therefore has a non-zero component tangent to T. It follows that f increases along T, in the direction of $\nabla f(B)_{\text {tangent }}$, and that therefore $\mathrm{f}(\mathrm{P})$ is not a maximum of f on T. For the same reason, $f(P)$ is not a minimum.
A maximum (or minimum) of f on T can only occur at points where ∇f is perpendicular to T and therefore has zero tangential component. Since ∇_{g} is also always perpendicular to the curve T, we are looking for points $\left(x_{1}, x_{2}\right)$ at which ∇_{f} and ∇_{g} are parallel, meaning that

$$
\begin{equation*}
\nabla_{f}\left(x_{1}, x_{2}\right)=\lambda \nabla_{g}\left(x_{1}, x_{2}\right) \tag{1}
\end{equation*}
$$

Those points of course must lie on T

$$
\begin{equation*}
g\left(x_{1}, x_{2}\right)=0 \tag{2}
\end{equation*}
$$

Equation (1) and (2) form a system of 3 (usually nonlinear) equations for the three unknowns x_{1}, x_{2}, λ. In the figure the four points M, M', m, m' satisfy all 3 conditions. The maximum of f is assumed at M and M', and the minimum of m and m '. Function of more variables, say $f\left(x_{1}, \ldots, x_{n}\right)$ subject to multiple constrains (say $g_{1}=g_{2}=\ldots=g_{k}=0$) are treated in a similar manner.

$$
\begin{gather*}
\nabla f\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{k} \lambda_{j} \nabla_{g_{j}}\left(x_{1}, \ldots, x_{n}\right) \tag{3}\\
g_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\ldots \\
g_{k}\left(x_{1}, \ldots, x_{n}\right)=0
\end{gather*}
$$

Geometric Foundations of Data Sciences CSE392(66540) CS378(51735) M392C(54487) Spring 2019 MW 9:30a.m.-11:00a.m. GDC 4.302 bajaj@cs.utexas.edu
Lecture 17: Lagrange Multipliers: Constrained v.s. Unconstrained, Feb 25, 2019

Figure 1: Level set for $f\left(x_{1}, x_{2}\right)$
and test the points found to be the maxima and minima. As in single-variable calculus, there are "inflection points" where $\nabla f=0$ and $\lambda=0$ or exceptional points where $\nabla g=0$ and λ might have to be ∞ but those will play no role in our example. The proportionality constants $\lambda_{1}, \ldots ., \lambda_{n}$ are called Lagrange multipliers. The solutions of (3) are called critical points of the constrained function f. In general optimization problem, this will be reformulated as (first order) Karush-Kuhn-Tucker condition or KKT condition in short.

Karush-Kuhn-Tucker(KKT) condition

Recall that the general convex optimization problem can be formulated as:

$$
\begin{array}{cl}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \forall i=1, \ldots, m \tag{4}\\
& h_{j}(x)=0, \forall j=1, \ldots, p
\end{array}
$$

The Lagrangian of the constrained optimization problem (4) is denoted as:

$$
\begin{equation*}
L(x, \lambda, \mu)=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{l} \mu_{i} h_{i}(x) \tag{5}
\end{equation*}
$$

Now assume f_{0}, f_{i}, h_{i} are differentiable. We say that x satisfies the (first order) Karush-Kuhn-Tucker(KKT) condition if:

$$
\begin{aligned}
\nabla_{x} L(x, \lambda, \mu) & =0 \\
g_{i}(x) & \leq 0, i=1, \ldots, m \\
h_{i}(x) & =0, i=1, \ldots, l \\
\lambda_{i} g_{i}(x) & =0, i=1, \ldots, m \\
\lambda_{i} & \geq 0, i=1, \ldots, m
\end{aligned}
$$

More detailed discussion will show this is a necessary condition for a convex function to reach the optimum, i.e. if x^{\star} is an optimal solution of the minimization problem, then x^{\star} must satisfy the KKT conditions above. Consider the following system

$$
\begin{align*}
& 2 x_{1}+2 x_{2}=\lambda x_{1} \tag{6}\\
& 2 x_{1}+4 x_{2}=\lambda x_{2} \tag{7}
\end{align*}
$$

together with the constraint

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}=1 \tag{8}
\end{equation*}
$$

Now the equations (6) and (7) are an eigenvalue problem with solutions

$$
\begin{align*}
\lambda_{+} & =3+\sqrt{5} \tag{9}\\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =c\left[\begin{array}{c}
1 \\
\left(\lambda_{+}-2\right) / 2
\end{array}\right] \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
\lambda_{+} & =3-\sqrt{5} \tag{11}\\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =c\left[\begin{array}{c}
1 \\
\left(\lambda_{-}-2\right) / 2
\end{array}\right] \tag{12}
\end{align*}
$$

Here notice that the equation (8) forces us to choose c in such a way that the eigenvector has length 1. For each λ there are 2 unit eigenvectors which are negative of each other.

We now have found four solutions x_{1}, x_{2}, λ of the Lagrange multiplier problem. Two give the minimum of $2 x_{1}^{2}+4 x_{1} x_{2}+4 x_{2}^{2}$ on $x_{1}+x_{2}=1$, the other 2 the maximum. The desired norm of A will be the square root of that maximum, since the norm is

$$
\max \sqrt{2 x_{1}^{2}+4 x_{1} x_{2}+4 x_{2}^{2}}
$$

The key question is: what is the matrix $\left[\begin{array}{ll}2 & 2 \\ 2 & 4\end{array}\right]$ that appeared in the eigenvalue problem (6) and (7).

$$
\begin{equation*}
\|A x\|_{2}^{2}=(A x . A x)=\left(A^{t} A x . x\right) \tag{13}
\end{equation*}
$$

Set $\mathrm{B}=A^{t} A$. This is a symmetric matrix. If $\mathrm{B}=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ then

$$
\begin{equation*}
B x . x=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2} \tag{14}
\end{equation*}
$$

Lagrange's method applied to (14) with constraint $x_{1}^{2}+x_{2}^{2}=1$, yields the two equations

$$
\begin{align*}
a x_{1}+b x_{2} & =\lambda x_{1} \tag{15}\\
b x_{1}+c x_{2} & =\lambda x_{2} \tag{16}
\end{align*}
$$

This is precisely the eigenvalue problem for the symmetric matrix B.

$$
B=A^{t} A=\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
2 & 4
\end{array}\right]
$$

The Lagrange mulitpliers, alias the eigenvalues of (6) and (7) are precisely the maximum and minimum of $\|A x\|_{2}^{2}$ on $\|x\|_{2}^{2}=1$, obviously the larger one $3+\sqrt{5}$ is the maximum. The maximum of $\|A x\|_{2}$ is then the square root $\|A\|_{2}=\sqrt{3+\sqrt{5}}$

2 Solving System of Linear Algebraic Equations

2.1 Under-constrained System

The SVD of a matrix A also yields valuable geometric information about solution of a system of linear (algebraic) equations.
Consider :

$$
\begin{gathered}
A \mathbf{x}=\mathbf{y} \\
U \Sigma V^{T} \mathbf{x}=\mathbf{y} \\
\Sigma V^{T} \mathbf{x}=U^{T} \mathbf{y} \\
\widetilde{\mathbf{x}}=\Sigma^{-1} \widetilde{\mathbf{y}} \\
\widetilde{\mathbf{x}}_{i}=\widetilde{\mathbf{y}}_{i} / \sigma_{i}
\end{gathered}
$$

Example.

$$
\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right] \mathbf{x}=\mathbf{y}
$$

Express the 2×2 matrix in terms of its $S V D, U \Sigma V^{T}$

$$
\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \mathbf{x}=\mathbf{y}
$$

Invert U and combine Σ and V^{T}

$$
\begin{array}{r}
{\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
1 \\
5
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right] \mathbf{y}} \\
{\left[\begin{array}{c}
x_{1}+x_{2} \\
0
\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}
y_{1}+2 y_{2} \\
-2 y_{1}+y_{2}
\end{array}\right] \mathbf{y}}
\end{array}
$$

Clearly, a solution only exists when $y_{2}=2 y_{1}$, i.e. when y lives in the range of A.
The problem here is that A is rank deficient, i.e. not full-rank.
Consider the general case where A, is an $n \times n$, and has rank k. This means that A has $n-k$ singular values which are zero:

$$
\Sigma=\left[\begin{array}{ccccc}
\sigma_{1} & & & & \\
& \ddots & & & \\
& & \sigma_{k} & & \\
& & & 0 & \\
& & & & \ddots
\end{array}\right]=\left[\begin{array}{cc}
\Sigma_{k} & 0 \\
0 & 0
\end{array}\right]
$$

If we try to solve the equations as in Equation 1, we hit a snag:

$$
\begin{gather*}
A x=y \\
U \Sigma V^{T} \mathbf{x}=\mathbf{y} \tag{17}\\
{\left[\begin{array}{cc}
\Sigma_{k} & 0 \\
0 & 0
\end{array}\right] \widetilde{\mathbf{x}}=\widetilde{\mathbf{y}}} \\
\widetilde{x}_{i}=\widetilde{y}_{i} / \sigma_{i}, \text { for } i \leq M \text { only }
\end{gather*}
$$

In the SVD-rotated space, we can only access the first k elements of the solution.
If there are more unknowns M than equations N , the problem is under-constrained or ill-posed :

$$
A x=y
$$

where A is order $N \times M$, x is order $M \times 1$ and y is order $N \times 1$, where $N<M$ Using our previous results on SVD, we can rewrite the linear system as

$$
\begin{equation*}
\sum_{i=1}^{N} \sigma_{i} u_{i}\left(v_{i}^{T} x\right)=y \tag{18}
\end{equation*}
$$

In other words, the only part of x that matters is the component that lies in the N-dimensional subspace of \mathbb{R}^{M} spanned by the first N columns of V . Thus, the addition of any component that lies in the null-space of A will make no difference: if x^{*} is any solution to Equation 18 so is $x^{*}+\sum_{i=N+1}^{M} \alpha_{i} v_{i}$, for any α_{i}.
Example. Consider

$$
\left[\begin{array}{ll}
1 & 1
\end{array}\right] \mathbf{x}=4
$$

The $S V D$ of this 1×2 matrix shows:

$$
[1]\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \mathbf{x}=4
$$

The null-space (i.e. the set of vector \mathbf{x} such that $A x=0$) of A is $\alpha\left[\begin{array}{c}1 \\ -1\end{array}\right]$. And we know $\mathbf{x}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$ is one solution. Therefore, in this under-constrained scenario, the solution will be :

$$
x=\left[\begin{array}{l}
2 \\
2
\end{array}\right]+\alpha\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

2.1.1 Regularization

In general, under-constrained problems can be made well-posed by the addition of a regularization, i.e. a cost-function that we'd like the solution to minimize. In the case of under-constrained linear equations, we know that the solution space lies in an N dimensional subspace of \mathbb{R}^{M}. One obvious regularization would be to pick the solution that has the minimum square norm, i.e. the solution that is closest to the origin. The new, well-posed version of the problem can now be stated as follows:

$$
\begin{align*}
& \min _{x \in \mathbb{R}^{M}} x^{T} x \\
& \text { s.t. } \quad A x=y \tag{19}
\end{align*}
$$

Proposition. If $A \in \mathbb{R}^{N \times M}, N \leq M$, has full row-rank, then $A A^{T}$ is invertible.

Proof.

$$
A=U\left[\begin{array}{ll}
\Sigma_{N} & 0
\end{array}\right] V^{T}
$$

where Σ_{N} is invertible. Therefore,

$$
\begin{aligned}
A A^{T} & =U\left[\begin{array}{ll}
\Sigma_{N} & 0
\end{array}\right] V^{T} V\left[\begin{array}{c}
\Sigma_{N} \\
0
\end{array}\right] U^{T} \\
& =U\left[\begin{array}{ll}
\Sigma_{N} & 0
\end{array}\right]\left[\begin{array}{c}
\Sigma_{N} \\
0
\end{array}\right] U^{T} \\
& =U \Sigma_{N}^{2} U^{T}
\end{aligned}
$$

where $\Sigma_{N}{ }^{2}$ is the $N \times N$ diagonal matrix with $\sigma_{i}{ }^{2}$ on the ith diagonal. Since Σ_{N} has no zero elements on the diagonal, neither does Σ_{N}^{2}. Therefore $A A^{T}$ is invertible (and symmetric, positive-definite). It is also worth noting here that since that each matrix in the last equation above is invertible, we can write down the SVD (and eigenvector decomposition) of $\left(A A^{T}\right)^{-1}$ by inspection: $\left(A A^{T}\right)^{-1}=U \Sigma_{N}{ }^{2} U^{T}$

We will now solve the problem stated in Equation 19 using Lagrange multipliers. We assume that A has full row-rank. Let

$$
\begin{equation*}
H=x^{T} x+\lambda^{T}(A x-y) \tag{20}
\end{equation*}
$$

The solution is found by solving the equation $\frac{\partial H}{\partial x}=0$ and then ensuring that the constraint ($\mathrm{Ax}=\mathrm{y}$) holds. First solve for x :

$$
\begin{array}{r}
\frac{\partial H}{\partial x}=0 \\
2 x^{T}+\lambda^{T} A=0 \\
x=\frac{1}{2} A \lambda^{T}
\end{array}
$$

Now using the fact that $A A^{T}$ is invertible, choose λ to ensure that the original equation holds:

$$
\begin{array}{r}
A x=y \\
A\left(\frac{1}{2} A^{T} \lambda\right)=y \\
\lambda=2\left(A A^{T}\right)^{-1} y \\
x=A^{T}\left(A A^{T}\right)^{-1} y
\end{array}
$$

Denote the right psuedo-inverse as:

$$
A_{R}^{+}=A^{T}\left(A A^{T}\right)^{-1}
$$

Proposition. Let A be an $N \times M$ matrix, $N<M$, with full row-rank. Then the pseudo-inverse of A projects a vector from the range of $A\left(A\right.$ subset of $\left.\mathbb{R}^{N}\right)$ into the N-dimensional sub-space of \mathbb{R}^{M} spanned by the columns of $A: A_{R}^{+}=A^{T}\left(A A^{T}\right)^{-1}$

Proof. In fact, we have:

$$
\begin{aligned}
A_{R}^{+} & =A^{T}\left(A A^{T}\right)^{-1} \\
& =V\left[\begin{array}{c}
\Sigma_{N} \\
0
\end{array}\right] U^{T} U \Sigma_{N}{ }^{-2} U^{T} \\
& =V\left[\begin{array}{c}
\Sigma_{N}-1 \\
0
\end{array}\right] U^{T} \\
& =\sum_{i=1}^{N} \sigma_{i}^{-1} v_{i} u_{i}^{T}
\end{aligned}
$$

One should compare the sum of outer products in the deduction with those describing A in linear systems Equation 18). This comparison drives home the geometric interpretation of the action of $A_{R}{ }^{+}$.

Proposition 2.1.1 means that the solution to the regularized problem of Equation $5, x=A_{R}{ }^{+} y$, defines the unique solution x that is completely orthogonal to the null-space of A. This should make good sense: in Section 3.1 we found that any component of the solution that lies in the null-space is irrelevant, and the problem defined in Equation 5 was to find the smallest?? solution vector.
Finally then, we can write an explicit expression for the complete space of solutions to $\mathrm{Ax}=\mathrm{y}$, for $\mathrm{A}, N \times M$, with full row-rank:

$$
x=A_{R}^{+} y+\sum_{i=N+1}^{M} \alpha_{i} v_{i}, \text { for any } \alpha_{i}
$$

2.2 Over-Constrained System : Linear Regression

In the matrix form, it is

$$
A x=y
$$

where A is order $N \times M$, x is order $M \times 1$, y is order $N \times 1$, where $N>M$. Find the vector x which minimizes $E=\sum_{i=1}^{N}\left(a_{i}{ }^{T} x-y\right)^{2}=(A x-y)^{T}(A x-y)$ The column-rank of a matrix is equal to its row-rank and its rank, and all three equal the number of non-zero singular values.

$$
\begin{gathered}
A=U\left[\begin{array}{ll}
\Sigma_{N} & 0
\end{array}\right] V^{T} \\
x=\left(A^{T} A\right)^{-1} A^{T} y
\end{gathered}
$$

References

[Fl] Hermann Flaschka. Principles of Analysis, 1995
[SE] Stefan Evert. Online Lectures by Stefan Evert, Osnabruck, Germany

